Die Kristallstruktur des Lithiumheptagermanats Li₂[Ge₇0₁₅]

Von

H. Völlenkle, A. Wittmann und H. Nowotny

Aus den Instituten für physikalische Chemie der Universität und der Technischen Hochschule Wien

Mit 1 Abbildung

(Eingegangen am 8. August 1969)

Die Kristallstruktur der Verbindung Li₂[Ge₇O₁₅] wird mit Hilfe dreidimensionaler Patterson- und Fourier-Synthesen bestimmt und nach der Methode der kleinsten Quadrate verfeinert. Die Gitterparameter der orthorhombischen Elementarzelle (Pben — D_{2h}^{14}) betragen: a = 7,36, b = 16,76 und c = 9,69Å. Die Struktur enthält stark gewellte Schichten aus [GeO₄]-Tetraedern, die über [GeO₆]-Oktaeder zu einem dreidimensionalen Gerüst verknüpft sind; sie läßt sich durch die Formel Li₂[Ge(Ge₂O₅)₃] charakterisieren. Als mittlere Ge—O-Abstände werden erhalten: 1,735 Å (K.Z. 4) und 1,893 Å (K.Z. 6).

The Crystal Structure of Li₂[Ge₇O₁₅]

The crystal structure of $\text{Li}_2[\text{Ge}_7\text{O}_{15}]$ has been determined by means of three-dimensional Patterson and electron density syntheses, and refined by least-squares method. The lattice parameters of the orthorhombic unit cell (Pbcn $-D_{2h}^{1}$) are: a = 7.36, b = 16.76 and c = 9.69 Å. The crystal structure contains strongly puckered layers of [GeO4]-tetrahedra linked by [GeO6]octahedra to form a three-dimensional framework; the structure can be characterized by the formula Li₂[Ge(Ge₂O₅)₃]. The averaged Ge-O-distances are found to be: 1.735 Å (c. n. 4) and 1.893 Å (c.n. 6).

Bei Untersuchungen im System Li₂O—GeO₂ wurde als GeO₂-reichste Verbindung das Lithiumheptagermanat Li₂Ge₇O₁₅ aufgefunden und an Hand von Einkristallaufnahmen charakterisiert¹. Krishna Murthy und Ip^2 stellten für dieses System ein Zustandsdiagramm auf und beschrieben das Lithiumheptagermanat als kongruent schmelzende Verbindung (Schmp. 1033 \pm 5° C).

¹ A. Wittmann und E. Modern, Mh. Chem. 96, 581 (1965).

² M. Krishna Murthy und J. Ip, J. Amer. Ceram. Soc. 47, 328 (1964).

Dem Lithiumheptagermanat wie auch anderen Germanaten kommt in jüngster Zeit erhebliches Interesse zu, weil sie, mit Übergangsmetallionen dotiert, bemerkenswerte Lumineszenzerscheinungen (Laser) zeigen^{3, 4}.

Die spezielle Eignung der Germanate als Wirtgitter für Fremdionen steht zweifellos in unmittelbarem Zusammenhang mit der Tendenz zur Ausbildung lockerer Gerüststrukturen ("open structure"), in denen mehr Plätze für Kationen zur Verfügung stehen, als der stöchiometrischen Zusammensetzung entsprechend benötigt werden. So konnte am Beispiel der Mischreihe Li₂[Ge₄O₉] — LiNa[Ge₄O₉] gezeigt werden, daß das Natriumion nicht die Position des substituierten Lithiumions, sondern eine eigene, neue Lage einnimmt⁵.

Experimenteller Teil

Die Verbindung $Li_2Ge_7O_{15}$ wird durch Tempern von glasförmigen Proben der Zusammensetzung $Li_2O \cdot 7 \text{ GeO}_2$ bei 900° C erhalten. Zur Herstellung des Germanatglases dienten Li_2CO_3 (reinst, Merck) und GeO₂ (99,999%, Loba-Chemie, Wien; Quarzform), die im entsprechenden molaren Verhältnis bei 1200° C im Platintiegel geschmolzen und anschließend abgeschreckt wurden.

Der für die Aufnahmen isolierte Einkristall hatte angenähert prismatische Gestalt mit 0,05 mm Durchmesser und 0,1 mm Länge; für den zylindrischen Querschnitt ergibt sich daraus: $\mu R = 0,55$. Die auf Weissenberg-Aufnahmen (CuK-Strahlung) der 0. bis 6. Schichtlinie mit [100] als Drehachse beobachteten Auslöschungen führen auf die bereits angegebene¹ Raumgruppe Pben — D_{2h}^{14} . Für Z = 4 beträgt die Röntgendichte 4,235 [g·cm⁻³]. Die aus Pulveraufnahmen (CrK_{α}-Strahlung) für die orthorhombische Elementarzelle berechneten⁶ Gitterparameter: a = 7,36, b = 16,76 und c = 9,69 Å wurden bestätigt. Die Intensitäten wurden durch visuellen Vergleich mit einer vom selben Kristall hergestellten Schwärzungsskala ermittelt, und zwar von jeweils zwei im Verhältnis 1:10 belichteten Aufnahmen. Die Werte werden mit *Lorentz*-und Polaris ationsfaktoren sowie Absorptionsfaktoren für zylindrische Kristalle korrigiert.

Gang der Kristallstrukturbestimmung

Die Vorzeichen der Strukturamplituden werden bei der Kristallstruktur des Lithiumheptagermanats weitgehend durch die relativ stark streuenden Germaniumatome beherrscht. Es wurden daher zuerst die Positionen dieser Atome aus einer dreidimensionalen zugespitzten Patterson-Synthese abgeleitet.

Das reziproke Gitter zeigt neben den für die Raumgruppe Pbcn — D_{2h}^{14} charakteristischen Auslöschungen noch eine weitgehende Übereinstim-

⁸ H. G. Lipson und W. W. Holloway, jr., Bull. Amer. Physic. Soc. 12, 293 (1967).

⁴ C. O. Dugger, J. Appl. Physics 38, 2345 (1967).

⁵ H. Völlenkle, A. Wittmann und H. Nowotny, Mh. Chem. 100, 79 (1969).

⁶ E. Modern, Dissertation Universität Wien, 1965.

mung mit den Auslöschungsbedingungen für ein basiszentriertes Gitter (h + k = 2 n). Zur Ermittlung der Positionen der Germaniumatome wurde daher zunächst die daraus resultierende höhersymmetrische Raumgruppe Cmem — D_{2h}^{17} herangezogen. Tatsächlich lassen sich aus der Patterson-Synthese alle starken Maxima durch eine Anordnung der 28 Ge-Atome mit der Symmetrie Cmem interpretieren; die Atome besetzen dabei die Punktlagen 16 (h), 8 (g) und 4 (c).

Die Strukturfaktorrechnung mit den erhaltenen Ge-Positionen liefert nun die Vorzeichen für die Reflexe mit h + k = 2 n, die zur Berechnung einer dreidimensionalen Fourier-Synthese benützt wurden. Die Elektronendichteverteilung zeigt neben den sehr starken Maxima der Ge-Atome auch solche mit viel geringerer Elektronendichte, welche den Sauerstoffatomen zugeordnet werden können. Die Lagen der Sauerstoffatome erscheinen jedoch wegen des Fehlens der Reflexe mit $h + k \neq 2 n$ verdoppelt. Die Auswahl eines richtigen Satzes von Positionen gelingt ohne Schwierigkeit, wenn man berücksichtigt, daß für die Germaniumatome sowohl eine tetraedrische als auch eine oktaedrische Sauerstoffungebung in Frage kommt. Eine weitere Fourier-Synthese mit allen beobachteten Reflexen führt auf wesentlich genauere Parameter der Germanium- und insbesondere der Sauerstoff-Positionen. Die Lithiumatome konnten in einer Differenzfunktion der Elektronendichte der Form (ρ_{beob} . — $\rho_{[Ge7015]}$) eindeutig lokalisiert werden.

Verfeinerung der Kristallstruktur

Die weitere Verfeinerung der gefundenen Parameter und der isotropen Temperaturkoeffizienten für jedes Atom erfolgte mittels der Ausgleichsrechnung, wobei stets die Atomformfaktoren für neutrale Atome eingesetzt wurden⁷. Als Gewichtsfunktion für die beobachteten Reflexe diente das Schema nach *Hughes*⁸. Für die Beurteilung des Grades der Übereinstimmung zwischen beobachteten und berechneten Strukturamplituden wurden folgende *R*-Werte benützt:

$$R = \Sigma |\Delta F| \, / \, \Sigma \, F_0; \; R' = (\Sigma \, w \cdot (\Delta \, F)^2 / \Sigma \, w F_0^2)^{1/2}; \; (w = ext{Gewicht}).$$

Für jede Verfeinerungsstufe wurden soviele Cyclen (etwa 5) gerechnet, bis die neu errechneten Parameterkorrekturen gegenüber den Standardabweichungen zu vernachlässigen waren. Mit den 484 beobachteten Reflexen und ohne Einbeziehung der Lithiumatome in die Strukturfaktorrechnung ergaben sich die *R*-Werte: R = 0.075 und R' = 0.091. Berück-

⁷ International Tables for X-ray Crystallography, The Kynoch Press, Birmingham, Vol. **3** (1962).

^B E. W. Hughes, J. Amer. Chem. Soc. 63, 1737 (1941).

sichtigt man auch die Lithiumatome, so verbessern sich die Werte auf R = 0,069 und R' = 0,084.

Bei diesem Stande der Verfeinerung zeigten die Standardabweichungen der Ge-Positionen eine deutliche Aufspaltung in zwei Gruppen: für die erstere beträgt die Abweichung im Durchschnitt 0,0030 Å, während für die zweite Gruppe der mehr als doppelt so große Wert von 0,0064 Å gefunden wurde. Kristallographisch können die beiden Gruppen aus dem Übergang von der Raumgruppe Cmcm nach Pbcn erklärt werden; die erste Parametergruppe verhält sich beim Übergang invariant, während die zweite Gruppe alle jene Parameter umfaßt, die einen zusätzlichen Freiheitsgrad erfordern. Der Effekt wird verständlich, wenn man berücksichtigt, daß von den Reflexen mit h + k = 2 n (Symmetrie Cmcm) 68% beobachtet und damit in die Rechnung eingesetzt werden, während von den für die Symmetrie Pben zusätzlich erforderlichen Reflexen mit $h+k\neq 2\,n$ nur 7% beobachtet werden konnten. Die Einbeziehung der nicht beobachteten Reflexe in die Rechnung mit einem statistischen Wert sollte also bei der weiteren Verfeinerung eine differenzierte Auswirkung auf die Standardabweichungen zeigen.

Nach *Ibers*⁹ wurden die nicht beobachteten Reflexe mit einem Viertel der kleinsten beobachtbaren Intensität in Rechnung gestellt. Die Gesamtzahl der Reflexe erhöht sich damit auf 1142, was 88% der Reflexe im Bereiche der CuK_{α}-Strahlung entspricht. Die nicht beobachteten Reflexe

			•		
Atom	Punktlage	x	y	z	В
- Ge (1)	4 (c)	0	0,4133 (2)	0,25	0,71 (6)
Ge (2)	8 (d)	0,2138(3)	0,0582(1)	0,2501(3)	0,76 (5)
Ge (3)	8 (d)	0,2844(4)	0,3403(1)	0,0328 (3)	0,66(5)
Ge (4)	8 (d)	0,2872(4)	0,3446(2)	0,4713(3)	0,79(5)
O (1)	4 (c)	0	0,0143(15)	0,25	2,11(46)
O (2)	8 (d)	0,2837 (23)	0,0882 (9)	0,4097 (16)	0.71(24)
O (3)	8 (d)	0,1893(23)	0,1482(8)	0,1518(15)	0,45(23)
O (4)	8 (d)	0,1978(23)	0,2476(9)	0,4418(15)	0.71(25)
O (5)	8 (d)	0,1425(23)	0,3283(8)	0.1704(14)	0.35(23)
O (6)	8 (d)	0,5047(34)	0,3578(10)	0,0936 (19)	1,99 (30)
O (7)	8 (d)	0,1475(23)	0,4169(8)	0.4083(15)	0.57(24)
O (8)	8 (d)	0,1416(21)	0,4928(7)	0,1676 (13)	0.00(21)
Li (1)	4 (b)	0	0,5	0	0.99 (78)
Li (2)	4 (c)	0	0,2369(42)	0,25	2,68 (1,23)

Tabelle 1. Atomparameter und Temperaturkoeffizienten für Li₂[Ge₇O₁₅]; Werte in Klammern geben die Standardabweichung der letzten Stellen an

⁹ J. A. Ibers, Acta cryst. [Kopenhagen] 9, 652 (1956).

Monatshefte für Chemie, Bd. 101/1

H. Völlenkle u.a.:

[Mh. Chem., Bd. 101

h	k	l	$ F_0 $	$ F_{c} $	h	k	ı	$ F_0 $	$ F_{ m c} $	h	k	l	$ F_0 $	$ F_{\rm c} $
_			00	87		9	7	356	335		20		50	55
0 0	ő	<u>_</u>	387	454	0	8	8	154	133	0	20	3	181	180
ñ	ň	ĥ	147	141	0 0	8	9	118	106	0	20	4	87	93
ñ	ő	8	175	174	Ő	8	10	101	83	1	20	4	175	165
ň	ň	10	239	239	ŏ	8	11	211	190	1	ŏ	8	79	80
ň	ň	12	72	73	ň	10	0	404	399	Î	1	1	88	108
ñ	2	12	80	68	ŏ	10	1	51	40	Î	1	2	69	85
õ	2	1	65	56	ŏ	10	2	210	193	Î	1	3	121	132
ň	2	2	325	431	ŏ	10	3	78	82	1	î	7	73	78
õ	2	3	276	290	ŏ	10	4	283	256	ĩ	Î	11	77	76
ŏ	2	4	81	72	ŏ	10	5	86	87	î	î	$\hat{12}$	43	43
ŏ	2	5	228	234	Ő	10	7	126	123	1	3	-0	133	123
õ	2	6	210	208	ŏ	10	8	61	55	1	3	1	144	153
ň	2	7	329	290	ŏ	10	ğ	76	78	1	3	$\hat{2}$	137	158
ŏ	2	8	153	146	ŏ	10	10	123	125	1	3	3	160	160
ŏ	$\overline{2}$	9	155	156	ŏ	10	11	59	55	1	3	5	105	92
ŏ	2	11	173	166	Ŏ	12	0	397	381	1	3	6	48	53
ŏ	2	12	139	141	ŏ	12	ĩ	141	144	1	3	7	105^{-5}	111
ŏ	4	0	325	378	ŏ	12	$\overline{2}$	166	186	1	3	9	69	70
ŏ	4	1	241	220	Ő	12	3	241	255	1	3	11	61	65
ŏ	4	$\hat{2}$	268	258	Ŏ	12	4	152	132	1	4	12	37	41
ŏ	4	3	38	41	Ő	12^{-1}	7	210	205	1	5	0	101	98
õ	4	4	123	117	Ō	12	10	64	61	1	5	1	121	129
õ	4	5	339	307	Õ	14	0	176	167	1	5	2	57	55
Õ	4	7	146	123	0	14	1	217	227	1	5	4	100	101
Ő	4	9	218	215	0	14	4	77	76	1	5	5	182	175
Õ	4	11	48	55	0	14	5	304	304	1	5	6	123	111
Ô	4	12	44	48	0	14	7	54	61	1	5	9	68	82
0	6	0	204	198	0	14	8	65	66	1	6	1	47	50
0	6	1	210	191	0	14	9	234	249	1	6	2	202	187
0	6	2	387	433	0	16	0	178	164	1	6	4	43	34
0	6	3	86	90	0	16	1	63	71	1	7	0	176	161
0	6	4	48	36	0	16	2	249	258	1	7	2	47	41
0	6	5	296	274	0	16	3	75	77	1	7	4	45	48
0	6	6	397	389	0	16	4	59	66	1	7	5	98	90
0	6	7	61	59	0	16	5	56	70	Í	7	6	75	62
0	6	8	127	115	0	16	6	101	106	1	8	4	47	48
0	6	9	174	159	0	16	7	105	100	1	8	6	54	54
0	6	12	143	160	0	18	0	139	111	1	9	0	147	122
0	8	0	174	159	0	18	1	56	57	1	9	1	86	91
0	8	1	44	38	0	18	3	53	28	1	. 9	4	86	74
0	8	2	225	186	0	18	4	120	123	1	. 9	5	105	97
0	8	3	339	326	0	18	5	184	190	1	. 9	7	57	53
0	8	4	210	187	0	18	6	36	41	1	. 11	0	194	184
0	8	5	160	147	0	20	0	150	152	1	. 11	2	87	81
0	- 8	6	171	154	0	20	1	74	75	1	. 11	- 3	52	68

Tabelle 2. Beobachtete und berechnete Strukturamplituden für $Li_2[Ge_7O_{15}]$

Fortsetzung (Tabelle 2)

-														
h	k	l	$ F_0 $	$ F_{ m c} $	h	k	l	$ F_0 $	$ F_{ m e} $	h	k	l	$ F_0 $	$ F_{\rm c} $
1	11	4	54	55	2	6	3	99	80	2	18	3	76	63
1	11	6	69	70	2	6	4	218	195	2	18	4	198	173
1	11	7	68	73	2	6	5	195	180	2	18	5	122	112
1	11	8	51	54	2	6	6	183	167	2	18	6	64	64
1	12	1	63	60	2	6	9	131	130	2	20	0	130	137
1	12	8	48	61	2	6	10	81	73	2	20	2	39	35
1	13	1	54	53	2	7	1	38	43	2	20	3	88	98
1	13	2	95	91	2	7	2	57	54	3	0	2	35	33
1	15	2	69	65	2	7	3	43	42	3	1	0	208	203
1	15	3	69	66	2	8	0	163	159	3	1	1	46	36
1	15	7	52	58	2	8	1	117	101	3	1	2	62	57
1	17	2	91	84	2	8	2	122	113	3	1	4	295	290
1	17	4	59	67	2	8	3	129	105	3	1	5	146	158
1	17	6	94	92	2	8	4	138	123	3	1	6	82	71
1	19	0	77	81	2	8	5	277	267	3	1	7	114	104
1	19	4	51	58	2	8	6	111	109	3	1	8	149	138
2	0	2	245	301	2	8	$\overline{7}$	179	173	3	1	9	125	121
2	0	4	210	247	2	8	8	111	96	3	1	10	156	132
2	0	6	68	67	2	8	9	202	188	3	1	11	99	91
2	0	10	126	115	2	8	10	59	47	3	2	5	43	47
2	0	12	53	57	2	8	11	97	98	3	3	0	207	197
2	1	3	77	65	2	10	0	377	427	3	3	1	25	22
2	1	4	75	70	2	10	1	134	109	3	3	2	231	213
2	2	0	92	93	2	10	2	60	48	3	3	4	94	106
2	. 2	1	213	211	2	10	3	204	201	3	3	5	43	42
2	2	2	216	229	2	10	4	301	334	3	3	6	118	127
2	2	3	260	300	2	10	7	194	191	3	3	7	51	55
2	2	4	47	46	2	10	8	128	115	3	3	10	54	43
2	2	5	61	60	2	10	10	172	166	3	4	1	28	26
2	2	6	120	118	2	11	4	78	72	3	4	2	31	29
2	2	7	371	386	2	12	0	149	138	3	5	0	68	67
2	2	9	79	75	2	12	1	106	101	3	5	1	54	57
2	2	11	235	216	2	12	2	286	304	3	5	2	272	225
2	2	12	70	78	2	12	3	156	164	3	5	3	53	53
2	3	2	41	28	2	12	6	136	125	3	5	4	83	83
2	4	0	187	185	2	12	7	181	181	3	5	5	225	247
2	4	1	278	302	2	12	8	93	91	3	5	6	50	46
2	4	2	219	244	2	14	0	80	75	3	5	7	117	103
2	4	3	102	106	2	14	1	98	84	3	5	8	64	63
2	4	4	115	99	2	14	3	57	44	3	5	9	169	149
2	4	5	365	391	2	14	4	56	60	3	5	10	83	78
2	4	6	143	142	2	14	5	188	188	3	5	11	52	59
2	4	9	270	270	2	14	7	129	120	3	6	4	62	58
2	4	12	72	75	2	14	9	161	162	3	7	1	106	108
2	5	1	90	78	2	16	0	78	69	3	7	2	316	323
2	5	2	108	97	2	16	2	267	292	3	7	3	169	188
2	6	0	236	236	2	16	6	205	164	3	7	6	146	160
2	6	1	99	97	2	18	0	180	191	3	7	7	149	148
2	6	2	210	230	2	18	2	66	58	3	7	8	88	81

Fortsetzung (Tabelle 2)

_														
h	k	l	$ F_0 $	$ F_{ m c} $	h	k	l	$ F_0 $	$ F_{c} $	h	\boldsymbol{k}	l	$ F_0 $	$ F_{ m c} $
3	7	10	53	56	4	2	6	125	116	4	12	8	43	37
3	7	11	111	103	4	2	7	131	142	4	14	0	75	77
3	9	0	244	264	4	2	8	75	86	4	14	1	92	100
3	9	1	75	65	4	2	9	139	122	4	14	3	63	56
3	9	2	45	50	4	2	10	41	40	4	14	4	60	56
3	9	3	66	61	4	2	11	94	82	4	14	5	183	187
3	9	4	171	176	4	3	1	56	53	4	16	0	96	106
3	9	7	104	92	4	3	2	32	35	4	16	1	48	50
3	9	8	59	63	4	4	0	190	191	4	16	2	113	115
3	9	10	89	85	4	4	1	77	73	4	16	3	62	68
3	11	0	84	74	4	4	2	99	99	4	16	4	50	50
3	11	1	60	50	4	4	3	97	89	4	16	6	68	59
3	11	3	102	104	4	4	4	89	82	4	18	1	64	65
3	11	5	91	71	4	4	5	154	155	4	18	2	43	44
3	11	7	154	150	4	4	9	95	86	4	18	4	50	53
3	11	9	86	73	4	4	11	54	49	5	0	2	32	33
3	13	0	147	160	4	5	1	61	55	5	0	4	65	63
3	13	1	128	123	4	5	2	38	43	5	1	0	269	246
3	13	2	91	88	4	6	0	38	22	5	1	1	59	56
3	13	3	105	99	4	6	1	133	127	5	1	2	65	48
3	13	4	148	147	4	6	2	326	321	5	1	3	195	207
3	13	5	144	144	4	6	3	44	44	5	1	4	145	148
3	13	7	105	91	4	6	5	125	120	5	1	5	72	76
3	13	8	50	41	4	6	6	131	119	5	1	7	218	202
3	13	9	110	109	4	6	8	51	61	5	1	9	64	58
3	15	Ō	52	55	4	6	9	90	86	5	1	10	84	78
3	15	1	116	107	4	6	10	61	54	5	3	0	237	234
3	15	2	115	116	4	8	0	89	91	5	3	1	180	163
3	15	3	50	55	4	8	1	63	52	5	3	2	295	315
3	15	5	180	185	4	8	2	114	105	5	3	3	240	253
3	17	3	86	91	4	8	3	195	224	5	3	4	95	82
3	17	5	70	72	4	8	4	102	105	5	3	5	104	98
3	17	6	67	76	4	8	5	75	76	5	3	6	154	145
3	19	Ð	123	132	4	8	6	66	62	5	3	7	172	161
3	19	1	70	64	4	8	7	148	152	5	3	9	117	106
3	19	2	81	79	4	8	8	59	68	5	5	0	133	125
3	19	3	73	76	4	8	10	79	67	5	5	1	225	209
3	19	4	66	73	4	10	0	199	204	5	5	4	71	64
4	0	2	48	35	4	10	2	102	107	5	5	5	302	346
4	0	4	326	337	4	10	4	93	101	5	5	7	65	59
4	0	6	143	145	4	10	5	76	70	5	5	9	233	229
4	0	8	151	150	4	10	7	49	52	5	6	2	45	46
4	0	10	132	131	4	10	9	82	73	5	7	0	205	203
4	1	2	35	36	4	12	0	131	125	5	7	2	217	217
4	1	3	35	39	4	12	1	53	44	5	7	3	102	104
4	2	2	190	199	4	12	2	76	83	5	7	4	65	48
4	2	3	88	84	4	12	3	132	140	5	7	5	95	93
4	2	4	83	72	4	12	4	130	129	5	7	6	94	97
4	2	5	148	148	4	12	7	122	129	5	7	7	136	140

h	k	l	$ F_0 $	$ F_{\rm e} $	h	k	l	$ F_0 $	$ F_{\mathbf{c}} $	h	k	l	$ F_0 $	$ F_{c} $
5	7	9	73	74	5	13	1	76	68	6	3	1	57	60
$\tilde{0}$	9	0	357	328	5	13	2	183	180	6	4	1	90	90
5	9	1	73	69	5	13	4	70	78	6	4	2	70	63
5	9	2	65	62	5	13	5	64	61	6	4	5	95	99
5	9	4	219	222	5	13	6	97	92	6	4	9	71	69
5	9	5	133	132	5	15	2	160	165	6	6	0	74	69
5	9	8	99	86	5	15	3	76	77	6	6	4	85	87
5	9	9	109	110	5	15	5	119	126	6	8	1	72	62
5	11	0	189	178	5	15	6	91	97	6	8	5	83	79
5	11	1	67	66	5	17	0	45	54	6	10	0	86	80
5	11	2	95	84	5	17	2	167	167	6	10	1	61	64
õ	11	3	189	184	5	17	3	73	68	6	10	3	60	57
5	11	4	108	106	5	17	4	56	70	6	10	4	82	85
5	11	5	63	59	6	0	2	98	103	6	10	7	48	60
5	11	6	117	104	6	2	0	53	34	6	12	2	81	88
5	11	7	202	202	6	2	1	86	83	6	16	2	63	74
5	11	8	88	87	6	2	3	71	70					
$\mathbf{\tilde{5}}$	13	0	186	167	6	2	$\overline{7}$	100	106					

Fortsetzung (Tabelle 2)

erhielten einen konstanten Gewichtsfaktor, der nach jedem Cyclus an das Gewichtsschema der beobachteten Reflexe durch eine Normierung der Mittelwerte von $w \cdot \Delta^2$ neu angepaßt wurde.

Nach Abschluß der Verfeinerung zeigten die berechneten Standardabweichungen nun tatsächlich, neben einer allgemeinen Verringerung der Fehler, vor allem eine fast vollständige Anpassung der Mittelwerte für die beiden Parametergruppen mit 0,0024 und 0,0027 Å.

Nach dem letzten Cyclus wurden als *R*-Werte für alle eingesetzten Reflexe erhalten: R = 0,168 und R' = 0,137; für die beobachteten Reflexe beträgt der Wert R = 0,072. Die Ergebnisse der Strukturverfeinerung sind in Tab. 1 und 2 enthalten; Tab. 3 bringt die Auswertung eines Pulverdiagramms (CuK_{α}-Strahlung) bis sin² $\vartheta = 0,28$.

Diskussion der Kristallstruktur

Die Kristallstruktur des Lithiumheptagermanats stellt eine Gerüststruktur dar, die aus isolierten $[GeO_6]$ -Oktaedern und stark gewellten Schichten aus $[GeO_4]$ -Tetraedern aufgebaut ist. Die Tetraederschicht besteht, für sich allein betrachtet, ausschließlich aus Vierer- und Zehnerringen.

Die Kristallstruktur des Lithiumheptagermanats erweist sich als eng verwandt mit jener des Lithiumtetragermanats, dessen Gerüst durch Verknüpfung mäanderartiger Tetraederketten über Oktaeder entsteht

(hkl)	10³ · sin²ϑ ber.	10 ^s · sin²፦ beob.	Int., ber.	Int., beob.	(hkl)	10 ³ · sin²ծ ber.	10³ · sin²ϑ beob.	Int., ber.	Int., beob.
(020)	8,5	8,3	5	SS	(332)	143,1)	<u> </u>	10)	
(111)	19,4	19,4	22	\mathbf{ms}	(204)	145,1	145,8	6	m
(130)	30,0	30.8	9	s	(262)	145,4	,	11	
(022)	33.81	, ,	100)		(154)	165,1)		21	
(040)	33.8	33,8	38}	st	(025)	166,7	166,7	5	s
(131)	36,3	36,4	23^{\prime}	\mathbf{ms}	(400)	175,5)	4 0	71	
(041)	40,2	40,8	22	\mathbf{ms}	(352)	177,0}	177,3	- 9}	\mathbf{ms}
(200)	43,9	44,1	64	\mathbf{mst}	(045)	192,1j	100 5	- 7 <u>j</u>	
(132)	55,3	55,7	16	\mathbf{s}	(083)	192,4	193,5	8}	\mathbf{ms}
(221)	58,7)		27)		(314)	202,1	202,6	$12^{'}$	\mathbf{ms}
(042)	59,2	59,5	20	m	(422)	209,3)		5)	
(023)	65,4	66,1	22^{\prime}	\mathbf{ms}	(440)	209,4	211,1	3	\mathbf{ms}
(202)	69,2)		22)		(0100)	211,6		5	
(113)	70,1	70,0	- 9	\mathbf{m}	(264)	221,3)	000 6	5)	~
(151)	70,2J		8		(155)	222,1	222,0	4∫	s
(222)	77,7}	H O D	23j		(372)	$227,7^{'}$	229,1	13	\mathbf{ms}
(240)	77,7	78,3	7 [m	(245)	236,0)		18)	
(241)	84,1	84,5	37	m	(026)	236,2	097.9	3	-
(133)	87,0	86,5	10	s	(084)	236,7	401,0	2	111
(004)	101,3]		17]		(0102)	236,9		2	
(062)	101,5	102,3	30}	\mathbf{mst}	(2100)	255,4		10	
(242)	103,0		19		(461)	258,0	959 2	2	ma
(223)	109,3	109,7	27'	m	(315)	259,1	208,5	- 3f	ms
(162)	112,5	113,0	10	s	(373)	259,4		4	
(260)	120,1)	101.9	7]	_	(510)	276,4		3)	
(252)	122,1	121,3	3}	s	(404)	276,8		5	
(243)	134,7)		3		(462)	277,0	978 1	10	m
(044)	135,1	136,1	2	s	(265)	278,3	410 , 4	3	111
(080)	135,4		2		(226)	280,2		1	
,	,		,		(284)	280.5		2	

Tabelle 3. Auswertung einer Pulveraufnahme von Li₂[Ge₇O₁₅]; CuK_{α}-Strahlung, sin² $\vartheta \leq 0.28$

(Abb. 1 a). In der Projektionsrichtung der Abbildung liegen die Ge-Atome der Ketten in 0, die der Oktaeder in $\frac{1}{2}$. Zur Ableitung der Struktur des Heptagermanats müssen zwei derartige Abfolgen in der Projektionsrichtung übereinandergestellt werden. Entfernt man nun jedes zweite Oktaeder und verknüpft statt dessen über die entstandenen Lücken die benachbarten Tetraederketten über gemeinsame Ecken, so gelangt man zum Gerüst des Heptagermanats (Abb. 1b).

Die Koordinations- und Bindungsverhältnisse der beiden Gerüststrukturen können auch in der Strukturformel durch eine Trennung der verschieden koordinierten Ge-Atome wiedergegeben werden. So bringen z. B. die beiden Formeln $\text{Li}_2[\text{Ge}(\text{GeO}_3)_3]$ und $\text{Li}_2[\text{Ge}(\text{Ge}_2\text{O}_5)_3]$ den Kettenbzw. Schichtcharakter der Tetraedergruppen klar zum Ausdruck. Die erhaltenen mittleren Ge—O-Abstände von 1,735 und 1,893 Å für die beiden Koordinationszahlen [4] und [6] stimmen mit den beiden entsprechenden Werten von 1,758 und 1,866 Å in der Struktur des Lithiumtetragermanats gut überein. Die Lithiumatome besetzen zwei verschiedene Lagen mit deformierter oktaedrischer Sauerstoffungebung und den mittleren Li-O-Abständen von 2,08 bzw. 2,21 Å.

Abb. 1. Anionengerüst der Verbindungen $Li_2[Ge_4O_9] - (a)$ und $Li_2[Ge_7O_{15}] - (b)$, aufgebaut aus $[GeO_4]$ -Tetraedern und $[GeO_6]$ -Oktaedern

Tab. 4 enthält ferner die Abstände zu einer angenommenen Position im Ursprung der Elementarzelle, die bei einer Dotierung des Lithiumheptagermanats mit großen Kationen, wie z. B. Nd³⁺, zur Aufnahme dieser Ionen dienen kann.

Die Rechenarbeiten konnten mit der Rechenanlage IBM 7040 des Institutes für numerische Mathematik der Technischen Hochschule Wien durchgeführt werden, wofür wir dem Vorstande, Herrn Prof. Dr. H. Stetter, bestens danken. Ferner sind wir der Firma Owens-Illinois, Toledo (Ohio), für die gewährte Unterstützung zu Dank verpflichtet.

Abstände:					
Ge (1) -O $(5.5')$	1.930 ± 0.0	15	Ge $(2) - 0(1)$	1.737 ·	+ 0.025
-0(77')	$1,880 \pm 0.0$	15	-0(2)	1.706	+ 0.016
-0(8.8')	$1,870 \pm 0.0$	14	-0(3)	1.792	± 0.015
0 (0,0)	1,010 _ 0,0	1.7	-0(8)	1 724	± 0.014
Mittolwort	1 803		-0 (0)	1,141.	_ 0,011
MILLEIWELL	1,090		Mittolmort	1 740	
$(\alpha_{\alpha}(2), \alpha_{\beta}(0))$	1 764 1 0.0	16	MILLEIWEIL	1,740	
Ge(3) - O(2)	$1,704 \pm 0,0$		(1, 1) (1)	1 569	0.015
-0(4)	$1,722 \pm 0,0$	10	Ge(4) - O(3)	1,702	$\pm 0,010$
-0 (5)	$1,706 \pm 0,0$	15	0(4)	1,778	$\pm 0,010$
—O (6)	$1,750 \pm 0,0$	20	-0(6)	1,670 :	$\pm 0,020$
			—O (7)	1,702	\pm 0,015
Mittelwert	1,736				
			Mittelwert	1,728	
Li (1)—O (2,2')	$2,341 \pm 0,0$	51			
—O (7,7')	$1,977 \pm 0,0$	51	Li (2)—O (3,3')	2,249	$\pm 0,071$
O (8,8')	$1,933 \pm 0,0$	50	O (4,4')	2,367	\pm 0,071
			O (5,5')	2,010	\pm 0,071
Mittelwert	2,084				
			Mittelwert	2,209	
X—O (1,1')	2,434				
-0(2,2')	2.704 Ab	stände zu d	ler nicht		
-O (6.6')	2.550 bes	etzten Pun	ktlage 4 (a)		
Mittelwert	2,563		0 ()		
	·)				
Winkel:					
O (5)—Ge (1)—	-O (5') 84,8	$3\pm0,9$	O (1)—Ge (2)–	-O (2)	113,5 \pm 1,0
O (5,5')-Ge (1)-	-O (7) 92,1	1 ± 0.7	_	-O (3)	$105,4 \pm 1,0$
· · · · · · · · · · · · · · · · · · ·	-O (7') 90,6	3 ± 0.7		-O (8)	$106,8 \pm 0,9$
	-0 (8) 93.0) + 0.6	O (2)-Ge (2)-	-O (3)	$105,3 \pm 0,7$
O (7.7')—Ge (1)	-O (8) 90.2	2 + 0.6	· · · · · · · -	-O (8)	114,9 + 0,7
- (-),	-0(8') = 87.2	2 + 0.6	O (3)—Ge (2)—	-0(8)	110.5 + 0.7
0 (8)—Ge (1)	-0(8') = 89.2	2 + 0.8	() ()	. ,	
- (-)	- (- //		O (3)—Ge (4)–	-0 (4)	105,0 + 0,7
O(2) - Ge(3) - Ge(3)	-0 (4) 104.9	$\theta + 0.7$	- (-) - ()	-O (6)	106.0 + 0.9
	-0(5) 115.7	7 ± 0.7		-0(7)	111.5 ± 0.7
	-0.(6) 112	± 0.9	O(4) - Ge(4) - Ge(4)	-0 (6)	113.6 ± 0.9
O(4) - Ge(3) - Ge(3)	-0(5) 110	1 ± 0.7		-0(7)	111.7 ± 0.7
	-0(6) 104 9	2 ± 0.9	O(6) - Ge(4) - Ge(4)	-0(7)	108.9 ± 0.9
$O(5) = C_0(3)$	-0(6) 101,2	1 ± 0.8		0 (1)	100,0 1 0,0
0 (0)06 (0)	-0 (0) 100,0	\pm 0,0	O(3) $- Ii(2)$	-0 (3')	97.2 ± 2.6
O(9.9') T; (1)	0 (7) 95 (3 1 1 0	O(3') = Ii(2)	-0(4)	90.1 ± 2.5
O(2,2) = -11(1) = -11(1)	-0(7) 30,0	$5 \pm 1,3$	U (3,3)—LI (2)	-0(4')	$95,1 \pm 2,0$ $95,7 \pm 2,5$
	-0(7) $64,9$	$E \pm 1, 3$		$-0.(\pm)$	011 ± 2.8
	-0 (8) 84,8	$\pm 1,3$	$O(4 4') = T_{2}(2)$	-0(5)	$91,1 \pm 2,0$ 956 ± 97
0/F F() T: (1)	-0(6) 99,6	$2 \pm 1, \sigma$	O(4,4) - D(2) -	-0(5)	878 ± 97
O(1,1)LI(1)	-0(8) = 82,8	$5 \pm 4,1$	O(5) $Ti(9)$	-0(5)	$87,8 \pm 2,1$
	-0 (8) 97,2	≥ <u>±</u> ∠,1	O(0)LI (2)	-0 (9)	00,1 ± 2,9
Ge (2)-O (1)-G	e (2') 129,8	$3 \pm 1,5$	Ge (1)-O (5)-O	łe (3)	124,0 \pm 0,9
Ge (2)-O (2)-G	e (3) 136.7	$t \pm 0.9$	Ge (3)-O (6)-O	le (4)	134,5 \pm 1,2
Ge (2)	e (4) 125.1	$\pm 0,9$	Ge (1)-O (7)-G	le (4)	$128,2 \pm 0,9$
Ge (3)G	e (4) 132.2	2 + 0.9	Ge (1)-O (8)-O	(2)	$126,8 \pm 0,8$

Tabelle 4. Interatomare Abstände und Winkel (in Å bzw. Grad) für $\rm Li_2[Ge_7O_{15}]$